

Multi-centre EuRopean study of MAjor Infectious Disease Syndromes FIRST WEBINAR: A MERMAIDS TALE

Programme

- 1. Introduction to PREPARE (Menno de Jong)
- 2. MERMAIDS ARI Background (Peter Horby)
- 3. MERMAIDS ARI Sites, set-up and inclusions (James Lee)
- 4. MERMAIDS ARI Cohort characteristics (Louise Sigfrid)
- 5. MERMAIDS for COVID-19 (James Lee)
- 6. Transcriptomic results, *Myth of Truth* (Cosimo Cristella)
- 7. PED-MERMAIDS More than a children's story (Malte Kohns)

PREPARE PREPARE PREPARE

PREPARE: EU funded network for harmonised large-scale clinical research studies on infectious diseases:

- prepared to rapidly respond to any severe infectious disease outbreak
- providing evidence for clinical management of patients and for informing public health responses
- Start date: 1 February 2014
- End date: 31 January 2021

This project is funded by the European Commission's FP7 Programme under grant agreement No. 602525

Platform for European Preparedness

Against (Re-)emerging Epidemics

Multi-centre EuRopean study of MAjor Infectious Disease Syndromes - Acute Respiratory Infections (MERMAIDS-ARI) Preliminary results

MERMAIDS-ARI Background

PREPARE is funded by the European Commission under grant number 602525

Three MERMAIDS studies

ARI

- Determinants of severity of acute respiratory infections
- 500 primary care patients
- 1,500 hospitalised patients.
- Eight countries
- 1st Oct 30th April

ARBO

- Burden, clinical management and impact of arbovirus illnesses in South East Europe
- 1500 adult patients
- Seven countries
- 1st May 31st Oct

PED

- Aetiology of sepsislike syndrome
- Aetiology of ARI
- Case-control
- 300 SLS cases and 52 controls
- 320 ARI cases and 320 controls
- Ten countries
- Continuous

ARI Design

Primary objective

To identify host- and pathogen- related determinants of severity of community acquired ARI in adults.

Secondary objectives

To describe the aetiology, clinical management and outcomes of adult patients with ARI

To develop and validate prognostic and diagnostic algorithms for ARI

Prospective observational study 2000 adults primary (500 adults) and secondary care (1500 adults) across Europe.

Setting

8 countries, 29 hospital sites, 9 primary care sites

Differentially expressed genes as assessed by RNA transcriptome

	Mild group			Inf.	HRV	RSV	S.pneu	
	No comorbidity			n	n	n	n	
	Chronic pulmonary disease			n	n	n	n	
	Chronic cardiovascular disease			n	n	n	n	
	Chronic metabolic disease				n	n	n	n
Severe group	Inf.	HRV	RSV	S.pneu				
No comorbidity	n	n	n	n				
Chronic pulmonary disease	n n n n							
Chronic cardiovascular disease	n	n	n	n				
Chronic metabolic disease	n	n	n	n				

Analysis

 Differentially expressed host genes in hospitalised and primary care managed participants, stratified by pathogens and comorbidities

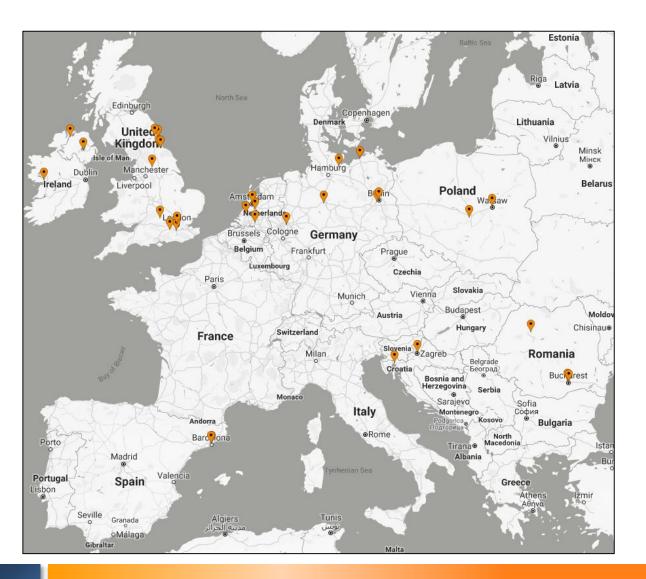
Pathogens:

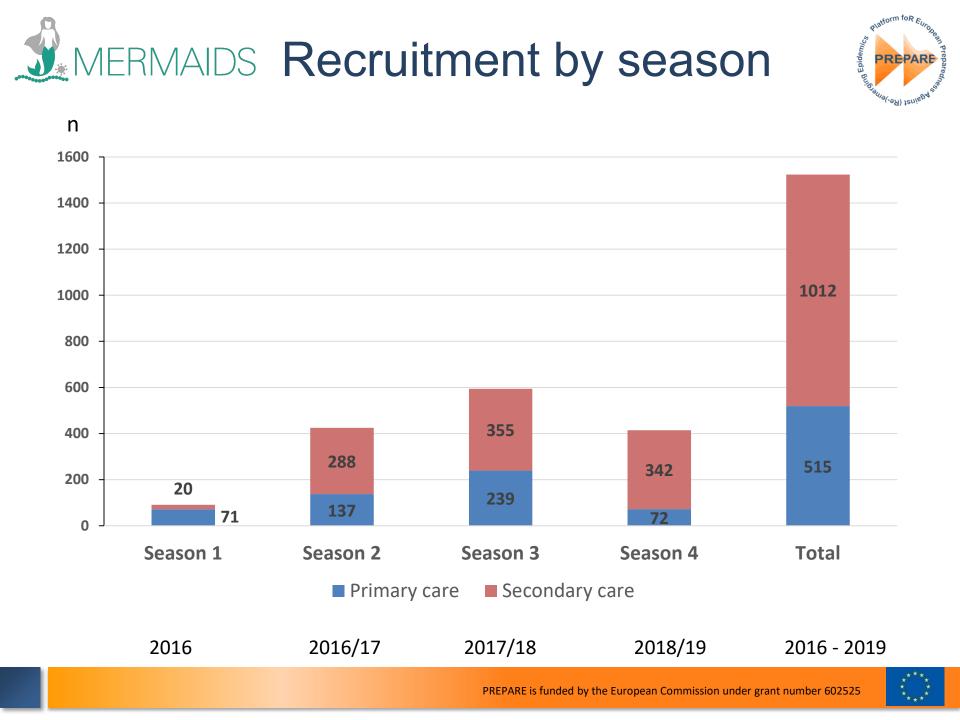
- Influenza virus
- Human Rhinovirus (HRV)
- Respiratory Syncytial Virus (RSV)
- Streptococcus pneumoniae
- Comorbidities (Charleson comorbidity index)
 - No comorbidity
 - Chronic pulmonary disease
 - Chronic cardiovascular disease
 - Diabetes

Sites, set-up and inclusions

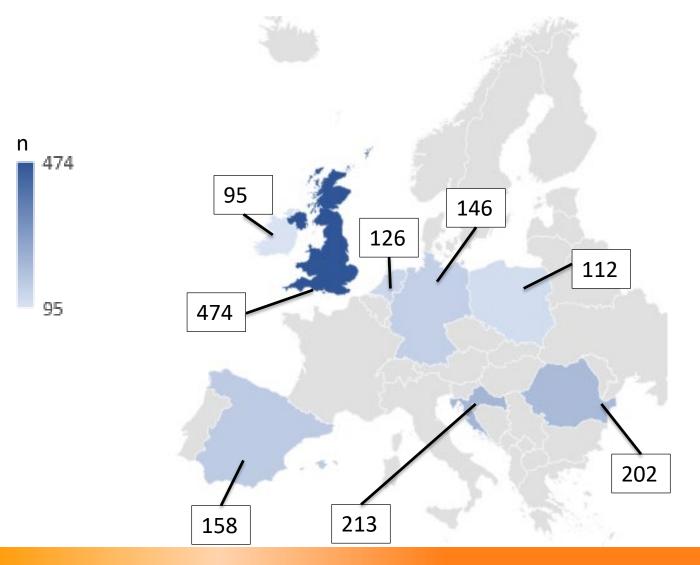
PREPARE is funded by the European Commission under grant number 602525

	And Reverse			
Primary Care	Hospital			
Patient is self-attending to primary care	Patient is admitted to hospital			
Age ≥ 18 years Clinical suspicion of a new episode of acute respiratory tract infection Onset of the following symptoms, within the last 7 days:				
Sudden onset self-reported history of f	fever AND/OR temperature of ≥38°C at			
presentation				
AND				
At least one respiratory symptom (cough, sore throat, runny or congested nose)				
AND				
At least one systemic symptom (headache, muscle ache, sweats or chills or				
tiredness)				


Procedures	Day0	Day 2	Hospital cohort: Discharge	Day 28
Screening/Consent	Х			
Baseline data	Х			
Nasopharyngeal swab	Х		Х	Х
Nasopharyngeal RNA	Х		Х	Х
Physical examination	Х			
EDTA blood	Х	Х	Х	
RNA blood	Х	Х	Х	Х
SST blood (serum)	Х			Х
Clinical observations	Х		Х	Х
Concomitant meds	Х		Х	Х
Clinical management	Х	Х	Х	
Follow up outcome				Х



Eight countries 38 sites

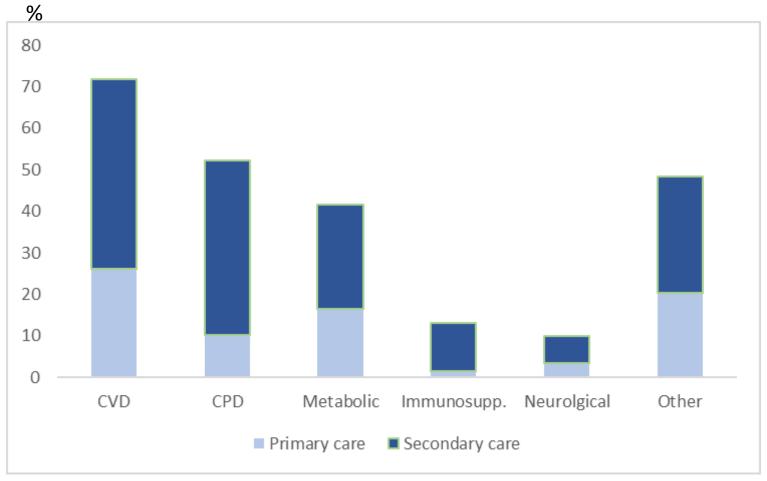

- 9 primary cares
- 29 secondary care

MERMAIDS Recruitment by Country

Cohort characteristics

PREPARE is funded by the European Commission under grant number 602525

PREPAR MERMAIDS-ARI recruitment 2016 - 2019


Characteristics	Primary Care (n=515)	Secondary Care (n=1012)
Age, median (IQR)	44 (33-57)	60 (45-71)
Female, n (%)	317 (61.6)	473 (46.7)
Ethnicity, white n (%)	489 (95.0)	933 (92.2)
Pregnant, n (%)	1 (0.2)	12 (1.2)
Days onset to inclusion, median (IQR)	3 (2– 4)	4 (2 – 5)
Never smoked regularly, n (%)	282 (54.8)	389 (37.8)
Influenza vaccine (≤ 6 m), n (%)	399 (77.5)	601 (59.4)
No comorbidity, n (%)	246 (47.8)	234 (23.1)
One comorbidity, n (%)	164 (31.8)	274 (27.1)
Two or more comorbidities, n (%)	99 (19.2)	497 (49.1)

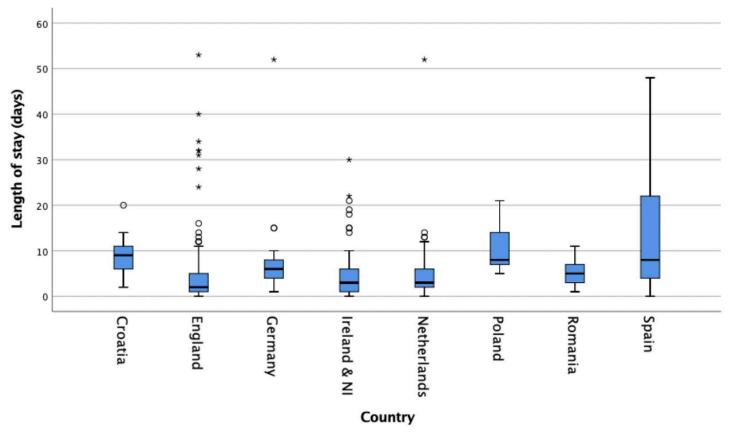
Comorbidities

CVD: Chronic cardiovascular disease, CPD =Chronic pulmonary disease Missing values < 2

0			attorm for Eur
Symptoms of	n inclusion	Primary care	Secondary care
Cough	Yes, n (%)	457 (88.7)	914 (90.3)
	No, n (%)	58 (11.3)	98 (9.7)
	Missing, n (%)	-	-
Sore throat	Yes, n (%)	395 (76.7)	419 (41.4)
	No, n (%)	120 (23.3)	590 (58.3)
	Missing, n (%)	-	3 (0.3)
Runny, congested r	10se Yes, n (%)	378 (73.4)	476 (47.0)
	No, n (%)	137 (26.6)	532 (52.6)
	Missing, n (%)		4 (0.4)
Dyspnoea	Yes, n (%)	<u>122 (23.7)</u>	730 (72.1)
	No, n (%)	322 (62.5)	262 (25.9)
	Missing, n (%)	71 (13.8)	20 (2.0)
Headache	Yes, n (%)	381 (74.0)	614 (60.7)
	No, n (%)	134 (26.0)	397 (39.2)
	Missing, n (%)	-	1 (0.1)
Muscle ache	Yes <i>,</i> n (%)	377 (73.2)	609 (60.2)
	No, n (%)	138 (26.8)	400 (39.5)
	Missing, n (%)	-	3 (0.3)
Sweat/chills	Yes, n (%)	374 (72.6)	758 (74.9)
	No, n (%)	141 (27.4)	253 (25.0)
	Missing, n (%)	-	1 (0.1)
Tiredness	Yes, n (%)	412 (80.0)	862 (85.2)
	No, n (%)	103 (20.0)	149 (14.7)
	Missing, n (%)	-	1 (0.1)

Assessments on enrolment

Assessment	Primary Care	Secondary Care
CRB-65, mean (SD)	0.2 (0.4)	0.7 (0.8)
PSI score, median (IQR)	38.3 (26 - 51)	65.1 (45 – 86)
Respiratory rate ≥24/min, n (%)	15/506 (3.0)	224/998 (22.4)
Pulse ≥100/min, n (%)	50/511 (9.8)	423/1008 (42.0)
Oxygen saturation <95% on room air, n (%)	33/383 (8.6)	404/954 (44.3)
SBP ≤90 mmHg or DBP ≤60 mmHg, n (%)	55/509 (10.8)	201/1009 (19.9)
CRP >10 mg/dl(>100mg/L), n (%)	9/66 ^(13.6)	439/949 (46.3)


*Only 18 % (93/515) of primary care patients had at least one biochemical test result documented vs. 94% (949/1012) in secondary care

Length of stay by country

Median length of hospital stay: 5 days (IQR: 3 – 9)

Diagnostic results

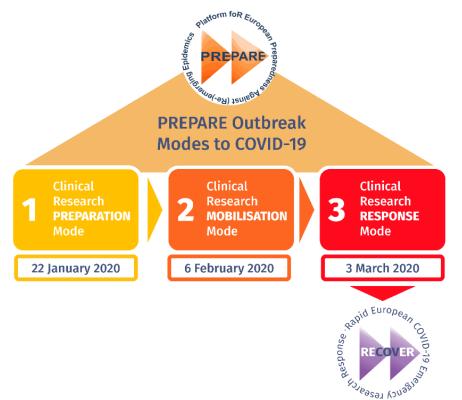
Pathogen*	Primary care (n = 515) n (%)	Hospital care (n = 1012) n (%)
Any Influenza (reference lab.)	133 (25.8)	261 (25.8)
Rhinovirus	80 (15.5)	103 (10.2)
Coronavirus (non SARS-CoV-2)	47 (9.1)	33 (3.3)
RSV	17 (3.3)	34 (3.4)
Metapneumovirus	6 (1.2)	35 (3.5)
Parainfluenza virus 1-4	10 (1.9)	23 (2.3)
Influenza cases detected by type	Primary care	Secondary care
(reference lab)	(n=133)	(n=261)
Influenza B	72 (54.1)	78 (29.9)
Influenza A (non H1N1)	41 (30.8)	89 (34.1)
Influenza A H1N1	20 (15.0)	95 (36.4)
Bacterial (Local diagnostics)	Primary care	Secondary care
A bacterial pathogen detected	139	155
Streptococcus pneumoniae	-	59 /155 (38.0)
Legionella pneumophila	-	8 /155 (5.2)
Staphylococcus aureus	-	3/155 (2.6)
Mycoplasma pneumoniae	-	4 /155(2.6)

63% administered antibiotic on inclusion in secondary care
 Viral diagnostics: Reference laboratory at University of Antwerp (NPH RT PCR).
 Bacterial diagnostics: local diagnostic outcomes

Outcomes

Parameter	Primary care N (%)	Secondary care N (%)
ICU/HDU admission	n/a	39/1011 (3.9)
Supplemental oxygen	n/a	491 /1006 (48.8)
Non-invasive ventilation	n/a	36/1006 (3.6)
Invasive ventilation	n/a	6 /1006 (0.6)
Prone invasive ventilation	n/a	5/1006 (0.5)
ARI infection on outcome	480 / 503 (95.4)	943/1006 (93.7)
Alive, discharged to home	503/512 (98.2)	895/1011 (88.54)
Day 28 mortality	0 (0.0)	14/1011 (1.4)

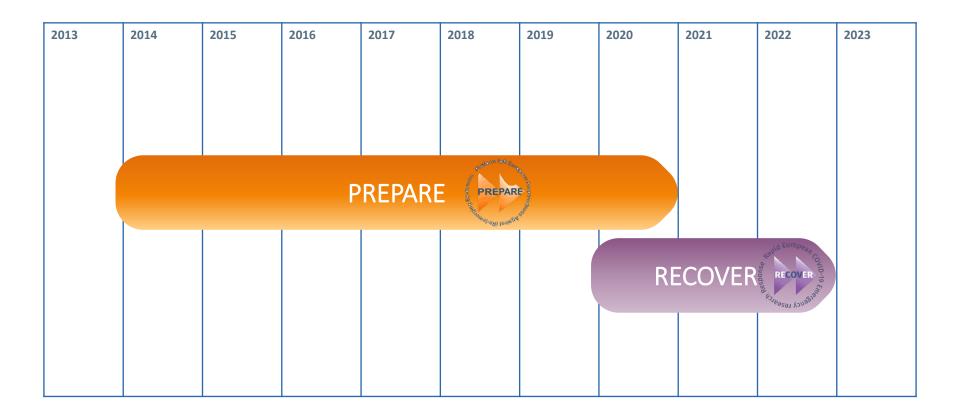
MERMAIDS for COVID-19



PREPARE is funded by the European Commission under grant number 602525

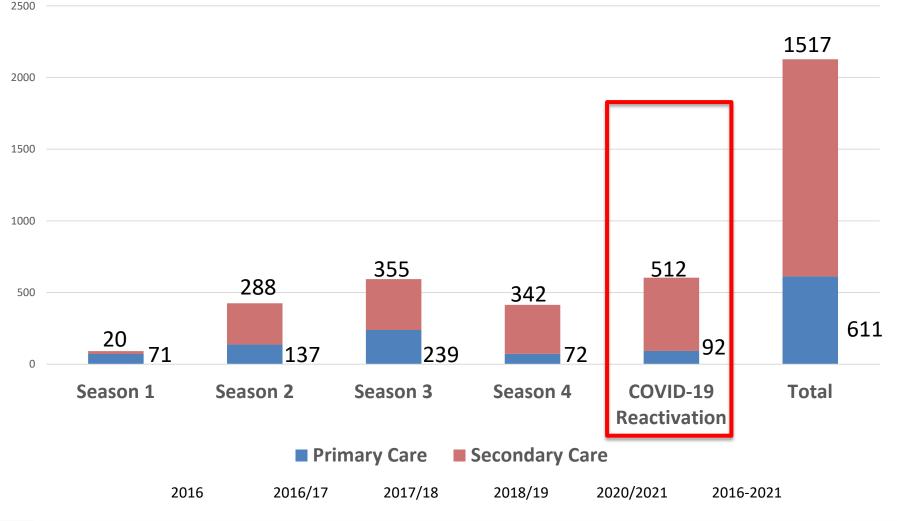
PREPARE's outbreak response action to the COVID-19 epidemic

RECOVER emerges from an EU-initiative called <u>PREPARE</u> that was first set-up in 2014.


PREPARE is designed to ensure that clinical research is set in motion to study the many uncertainties of a new disease, which has the potential to threaten the health and security of European citizens.

Funding Timeline

MERMAIDS for COVID-19


- Increased the target to 3000 and extended duration to February 2022
- Can compare mild and severe COVID-19 cases, and compare SARS-CoV-2 with other respiratory viruses
- Can compare mild and severe COVID-19 cases, stratified by comorbidities
- Can determine host responses and pathophysiology in COVID-19
- Can determine pathogen and host mechanisms underlying disease severity of COVID-19

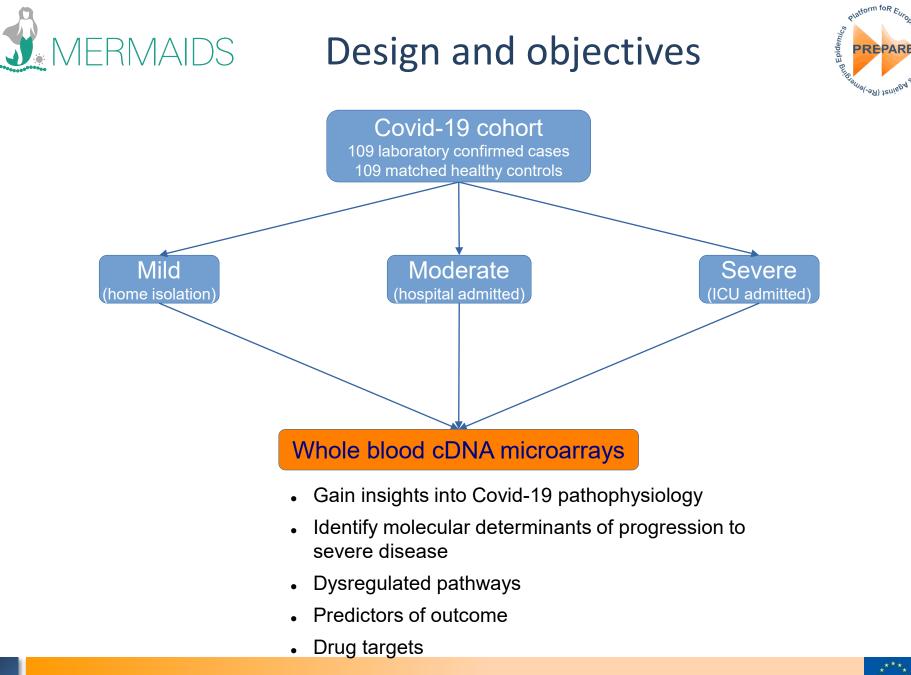
Recruitment per season + COVID-19 Reactivation

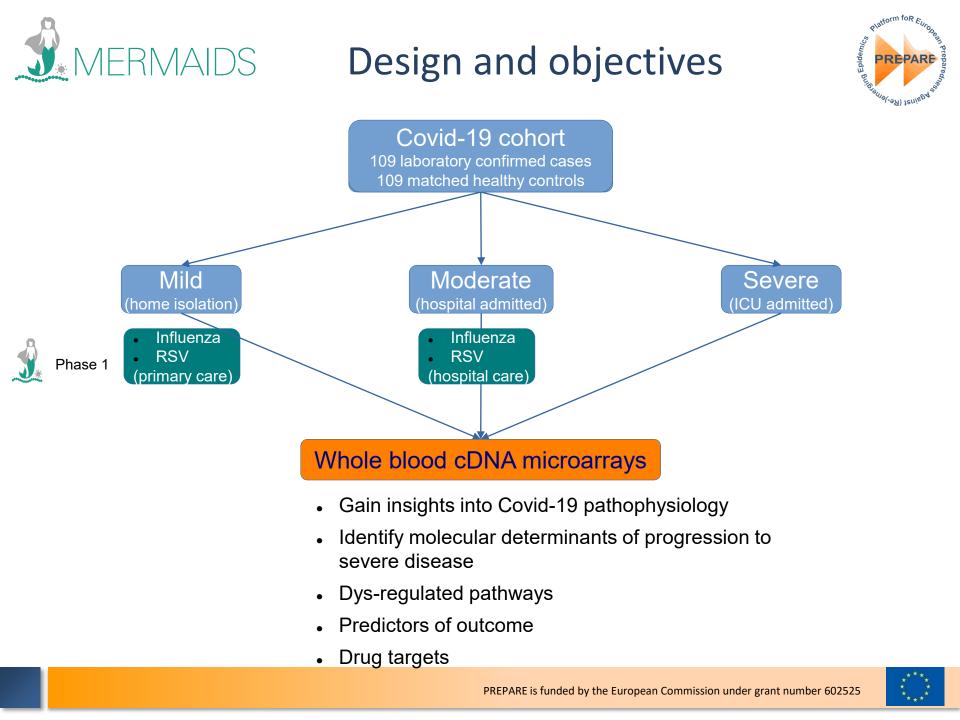
Acknowledgements

Myth of truth?

Profiling host gene expression during acute respiratory infections

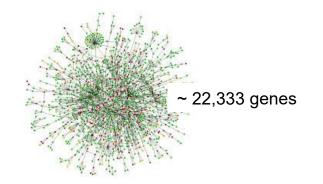
PREPARE is funded by the European Commission under grant number 602525





- Study design and objectives
- Introduction to transcriptome analysis
- Host gene expression in Covid-19
- Placing Covid-19 in the context of other ARI
- Final remarks

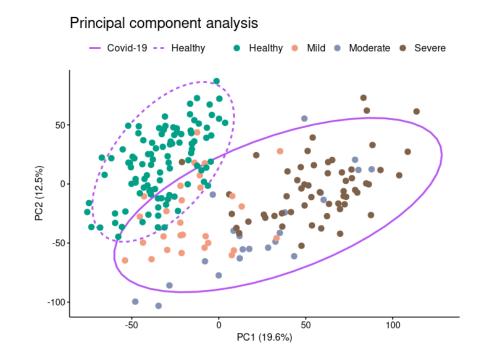
Patients characteristics

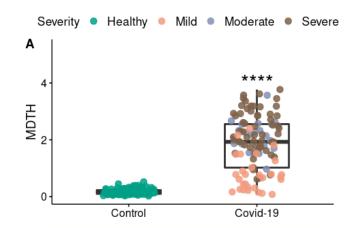


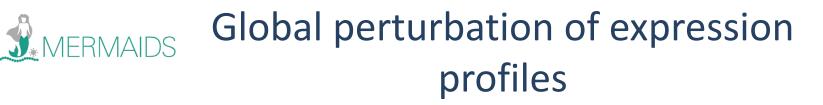
	Control (N = 103)	Mild $(N = 29)$	Moderate $(N = 22)$	Severe $(N = 57)$
Age				
Median	62	49	63.5	65
Gender				
Male $(\%)$	74(72%)	19~(66%)	11 (50%)	49 (86%)
Comorbidity				
Any	69~(67%)	9(31%)	13~(59%)	40 (70%)
Days of illness				
Median	0	7	7	16
\mathbf{Death}				
n	0 (0%)	0 (0%)	2(9%)	15~(26%)

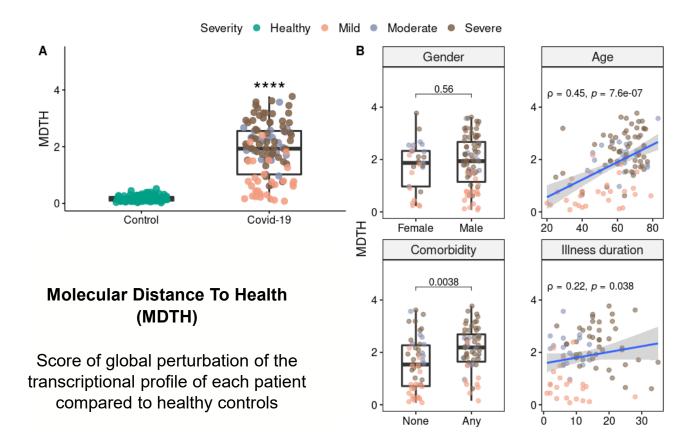
Untangling complex systems

Complexity


- Global variation/perturbation of gene expression (PCA)
- Transcriptome decomposition (modules)
 - Groups of biologically and functionally related genes
- Differentially expressed genes (DEGs)
 - Fold-Change = Magnitude of difference
 - P-value = Significance of difference
- Genes prioritization

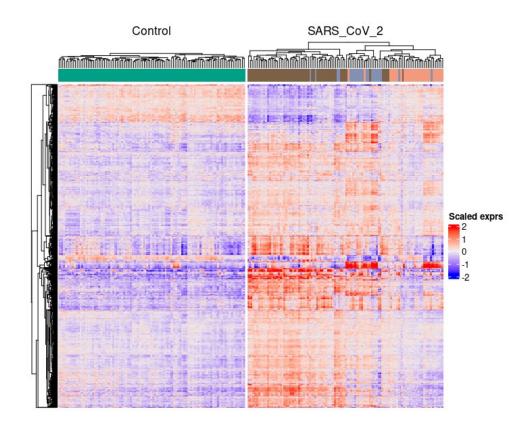

Global variation of expression profiles



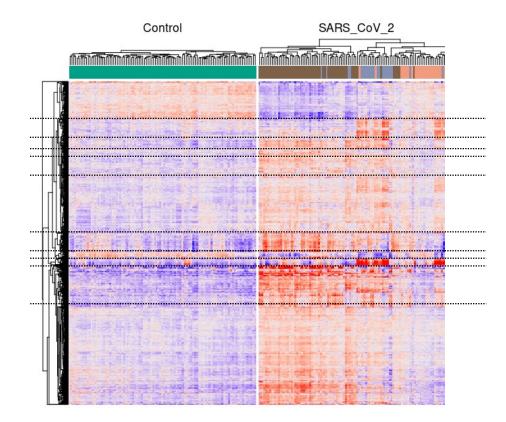


Molecular Distance To Health (MDTH)

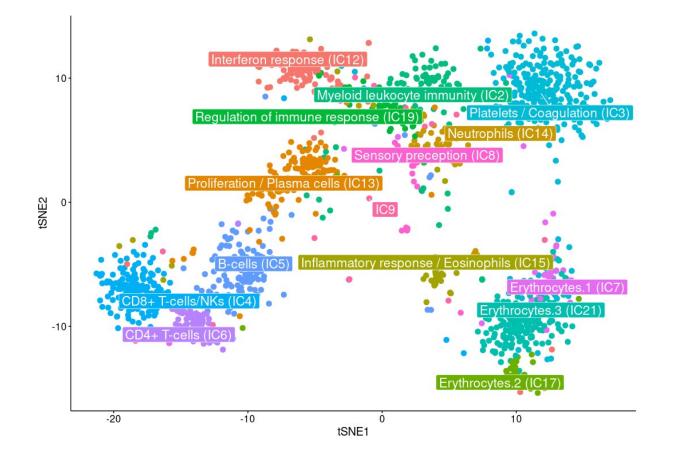
Score of global perturbation of the transcriptional profile of each patient compared to healthy controls



MERMAIDS Unveiling the modular architecture of GEP

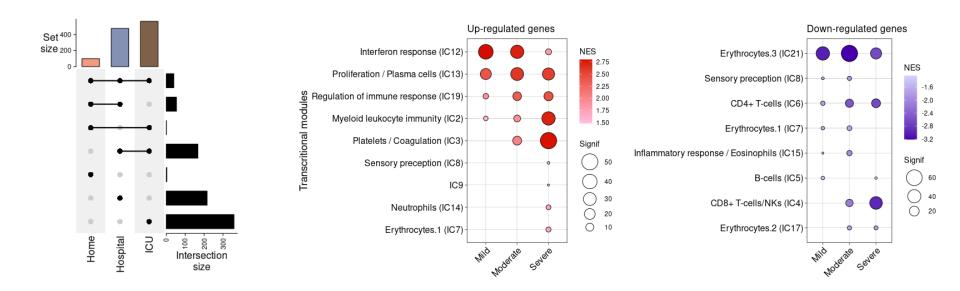

Severity • Healthy • Mild • Moderate • Severe

MERMAIDS Unveiling the modular architecture of GEP


Severity • Healthy • Mild • Moderate • Severe

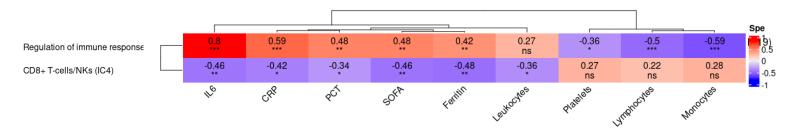
MERMAIDS Unveiling the modular architecture of GEP

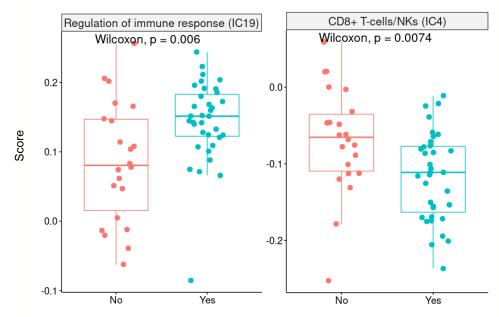
Modules: groups of biologically and functionally related genes



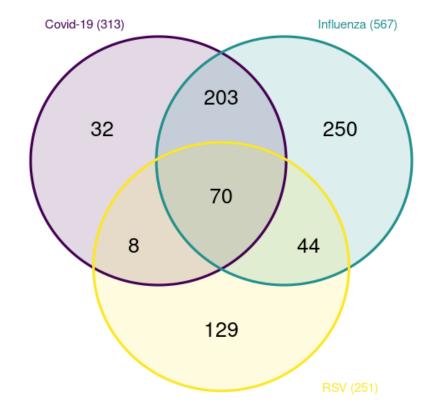
Differential gene expression

Shared genes across severity


Transcriptional modules enrichment



Modules validation with clinical traits



Thrombosis 🟟 No 🔅 Yes

MERMAIDS Covid-19 compared to other respiratory infections

MERMAIDS Covid-19 compared to other respiratory

infections

-2 -1 0 1

effSize

RSV Influenza 15. 10-Mild nsory preception (IC8) Interferon response (IC12) Myeloid leukocyte immunity (IC2) Neutrophils (IC14 Inflammatory response / Eosinophils (IC1) 5 - Regulation of immune response (IC19) CD4+ T-cells (IC6) Proliferation / Plasma cells (IC13) nsory preception (IC8 B-cells (IC5) Interferon response (IC12) B-cells (IC5) Inflammatory response / Eosinophils (IC15) 0 CD8+ T-cells/NKs (IC4) Platelets / Coagulation (IC3) Neutrophils (IC14) CD8+ T-cells/NKs (IC4) Erythrocytes.1 (IC7) Regulation of immune response (IC19) 5.0007 Proliferation / Plasma cells (IC13) Erythrocytes.3 (IC21) CD4+ T-cells (IC6) Platelets / Coagulation (IC3) Erythrocytes.3 (IC21) Erythrocytes.2 (IC17) -log10(p-value) 0 ٠ . 10-Moderate Mveloid leukocyte immunity (IC2) eration / Plasma cells (IC13) Myeloid leukocyte immunity (IC2) feration / Plasma cells (IC13) 5 B-cells (IC5) Regulation of immune response (IC19) Interferon response (IC12) ception (IC8) B-cells (IC5) eutrophils (IC14 Erythrocytes.3 (IC21) Interferon response (IC12) Erythrocytes.3 (IC21) Platelets / Coagulation (IC3) Inflammatory response / Eosinophils (IC15) . . . CD8+ T-cells/NKs (IC4) ensory preception (IC8) Neutrophils (IC14) Regulation of immune response (IC19) Platelets / Coagulation (IC3) CD4+ T-cells (IC6) -2 -1 ò -2 -1 ò logFC

Final remarks

- Severe covid-19 is characterized by dysregulation in:
 - Inflammatory pathways
 - Myeloid cells activation
 - Adaptive immunity
 - Coagulation / platelets activation
 - Sensory perception
- Covid-19 exhibit a considerable number of commonalities and few but relevant differences with other respiratory pathogens
- Ongoing work:
 Network analysis
 Biomarkers
 Drug targets
- > Future work:
 - Gain insights into differences and commonalities in other relevant respiratory pathogens

Acknowledgements

Sarah van Leeuwen Karen de Haan Dirk Eggink

Hugo van Willigen Frank vas Someren Greve Victoria Janes Rene Vigeveno

Brendon Scicluna Menno de Jong

James Lee Peter Horby

Matthijs Raadsen Rik Endeman (ICU) Johan van den Akker Eric van Gorp Pieter Fraaij Marion Koopmans

Maria Prins Elke Wynberg

Multi-centre EuRopean study of MAjor Infectious Disease Syndromes –

Community-acquired acute respiratory tract infection in childhood (PED-MERMAIDS)

More than a children's tale: Aetiology and management of paediatric ARI hospitalisations

PREPARE Webinar Series – 17/03/2021

Malte Kohns Vasconcelos, St George's, University of London

Objectives

Primary objective: To estimate the proportions of children aged 0-6 years old with acute respiratory infection (ARI) which is attributable to Respiratory Syncytial Virus (RSV), Influenza virus, Human Rhinovirus or *S. pneumoniae*.

Objectives

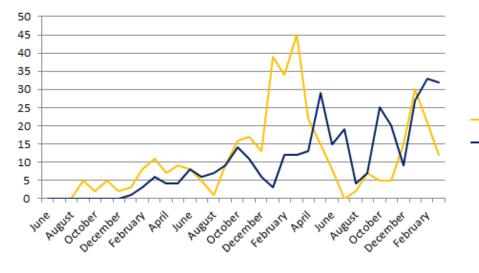
Secondary objectives:

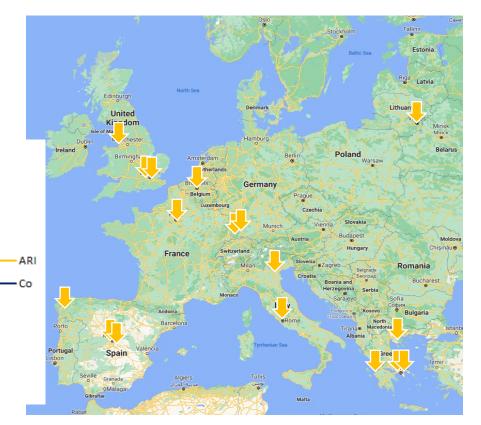
- To assess if viral load is associated with disease severity in children (aged <6 years) with ARI and RSV, FLU and/or HRV detectable in NP swabs

- To assess if bacterial load is associated with disease severity in children (aged <6 years) with ARI and S. pneumoniae detectable in NP swabs

- To assess association between viral-viral and viral-bacterial co-detection and disease severity in children aged <6 years with ARI and RSV, influenza virus, HRV or S. pneumoniae detectable in NP swabs

- Describe the clinical management of ARI in hospitalised children (< 6 years old) across Europe


- To establish whether common pathways exist that may explain the development of severe ARI in both adults and young children



Recruitment

Continuous (year-round) recruitment between September 2016 and March 2019 Parallel recruitment of cases and controls Patients were recruited as they presented to participating EDs, mainly during day-time hours

Eligibility criteria (ARI group)

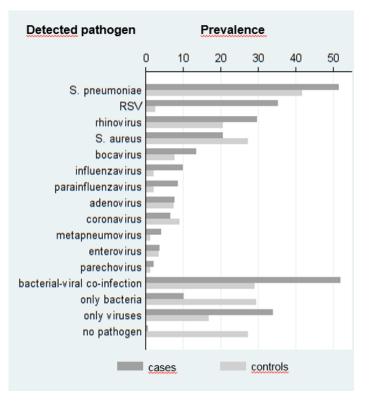
- Clinical suspicion of a new episode of acute respiratory tract illness within the last 7 days
- The attending physician has decided that the child requires hospitalisation
- Primary reason for hospital admission is clinical suspicion of a new episode of ARI
- Temperature >38°C measured by any method
- Age < 6 years old on the day of admission (day 0) into the study

AND at least TWO of the below with at least ONE of either 1 or 2 (At least 2 YES mandatory):

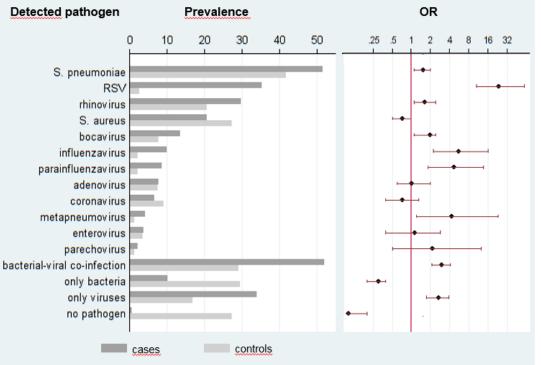
- Signs of reduced general state: Poor feeding, vomiting, lethargy drowsiness.
- Signs of respiratory dysfunction: Age related tachypnoea or brady/apnoea or decreased oxygen saturation (<92% in room air)
- · Signs of upper respiratory tract infection
- Signs of lower respiratory tract infection

Exclusion for: complex comorbidities or immunosuppression, non-infectious aetiology or non-ARI focus

Controls: hospital outpatients or attending for elective procedure – not necessarily asymptomatic


Case-control study population

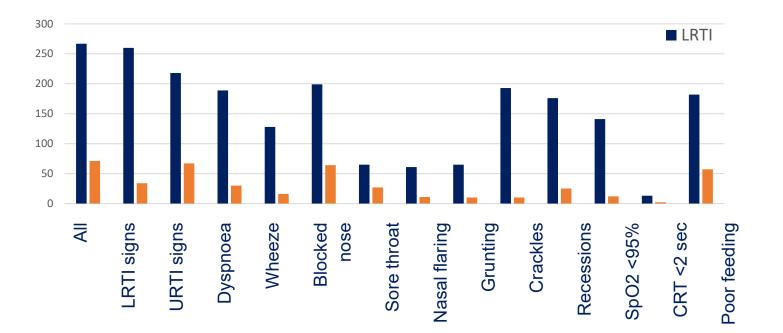
Groups:		ARI	Control	р-
				value
Total inclusions (n)		349	306	-
Sex (male, n, %)		202 (57.9)	200 (65.4)	< 0.001
Age in years (median, IQR)		1.09 [0.42, 2.49]	1.80 [0.93, 3.65]	< 0.001
Age range	<12 months	160 (45.9)	83 (27.1)	
(n, %)	12 - <36 months	120 (34.4)	114 (37.3)	
	>= 36 months	69 (19.8)	109 (35.6)	< 0.001
Inclusion	Oct – Dec	76 (21.8)	85 (27.8)	
by season	Jan – Mar	182 (52.2)	115 (37.6)	
(n, %)	Apr – Sep	91 (26.1)	106 (34.6)	< 0.001
Inclusion	Greece	144 (41.3)	50 (16.3)	
by country	Italy	85 (24.4)	46 (15.0)	
(n, %)	Spain	45 (12.9)	45 (14.7)	
	UK	55 (15.8)	94 (30.7)	
	other	20 (5.7)	71 (23.2)	< 0.001


Pathogen detection in cases and controls

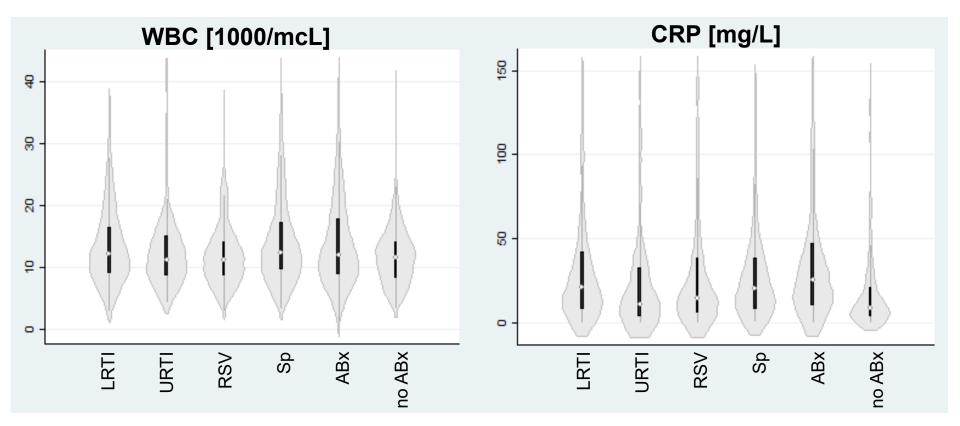
Pathogen detection in cases and controls

Odds ratio of detection in cases compared to controls by multiplex PCR in nasopharyngeal swabs, by pathogen, adjusted for age and season (logistic regression)

Pathogen	Adjusted OR	95%-CI	p-value
S. pneumoniae	1.7	1.2-2.3	0.002
RSV	20.6	9.4-45.3	<0.001
Influenza virus	6.1	2.5-14.9	<0.001
No pathogen detected	0.1	<0.1-0.2	<0.001


Aetiological fractions by age and season

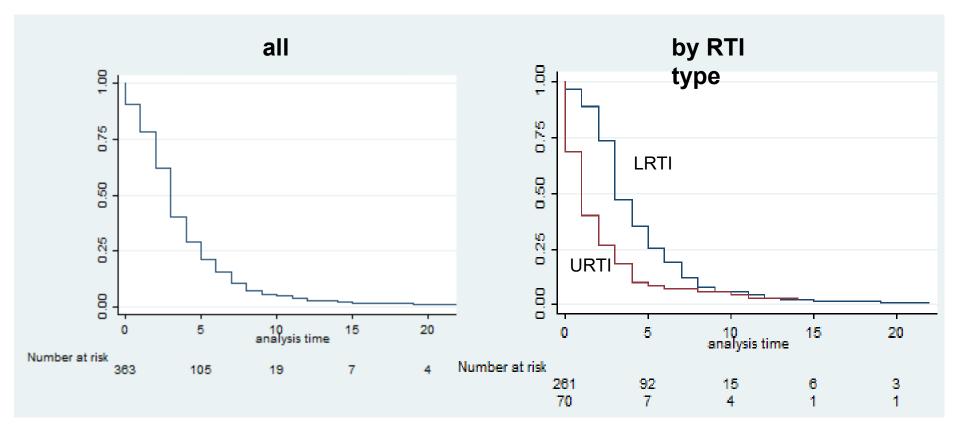
RSV		Age group (PAF%)			
		<12 months	12 - <36 months	≥36 months	
Season	Oct – Dec	48.0	38.1	20.0	
	Jan – Mar	48.1	35.6	19.2	
	Apr – Sep	23.5	16.7	4.8	
Influenza virus		Age group (PAF %)			
		<12 months	12 - <36	≥36 months	
			months		
Season	Oct – Dec	-	8.0	3.8	
	Jan – Mar	11.0	9.5	30.3	
	Apr – Sep	3.0	-	4.8	


Signs and symptoms at presentation

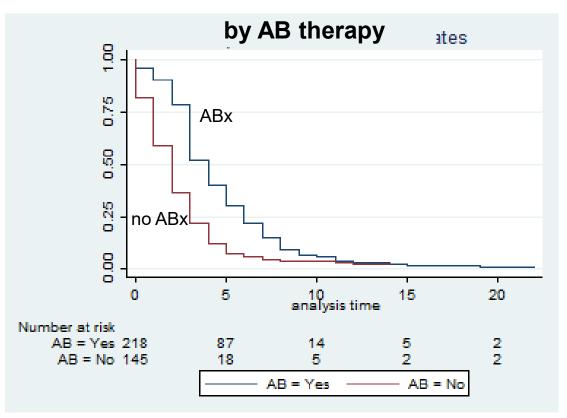
WBC and CRP

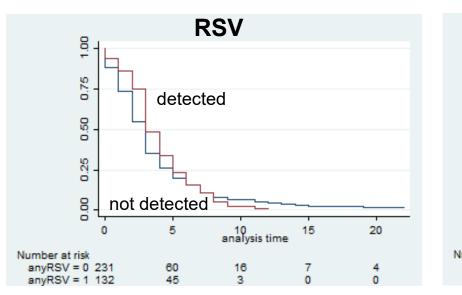
Management

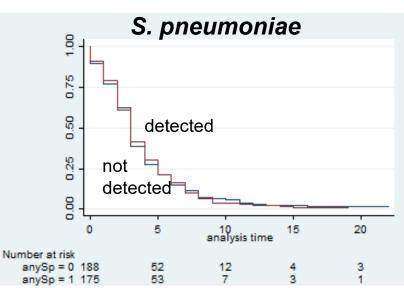
		Type of ARI (diagno	р	
		LRTI	URTI	
Ν		267 (100%)	71 (100%)	
respiratory	any	169 (63.3)	24 (33.8)	<0.001
pathogen testing	culture	37 (13.9)	2 (2.8)	0.008
	RSV	151 (56.6)	22 (31.0)	<0.001
	Influenza	139 (52.1)	21 (29.6)	0.008
chest X-ray	chest X-ray		23 (32.4)	<0.001
medication	antibiotics	183 (68.5)	25 (35.2)	<0.001
	corticosteroids	100 (37.5)	13 (18.3)	<0.001
	bronchodilators	162 (60.7)	10 (14.1)	<0.001
intravenous fluids		163 (61.1)	24 (33.8)	<0.001
supplementary O ₂		152 (56.9)	8 (11.3)	<0.001
ICU admission		12 (4.5)	0 (0.0)	0.169


Antibiotic treatment regimens

	Spain	Italy	Greece	UK	other	
	LRTI					
no antibiotic	18 (36.0)	25 (46.3)	61 (56.0)	16 (39.0)	9 (69.2)	
combination	3 (6.0)	1 (1.9)	4 (3.7)	2 (4.9)	0 (0.0)	
aminopenicillin	16 (32.0)	9 (16.7)	14 (12.8)	7 (17.1)	1 (7.7)	
aminopenicillin + BLI	0 (0.0)	7 (13.0)	4 (3.7)	10 (24.4)	0 (0.0)	
3 rd generation cephalosporin	6 (12.0)	2 (3.7)	8 (7.3)	3 (7.3)	0 (0.0)	
other cephalosporin	1 (2.0)	1 (1.9)	1 (0.9)	0 (0.0)	0 (0.0)	
macrolide	1 (2.0)	2 (3.7)	0 (0.0)	1 (2.4)	0 (0.0)	
other	5 (10.0)	7 (13.0)	17 (15.6)	2 (4.9)	3 (23.1)	


Length of hospital stay (days)


Length of hospital stay by antibiotic therapy



Length of hospital stay by pathogen

	RR	95%-CI	р
RSV	0.80	0.64, 1.01	0.062
influenza	1.08	0.76, 1.53	0.670
S. pneumoniae	1.06	0.86, 1.32	0.570

Adjusted for age, sex and country of inclusion; unspecified RTI type, missing CRP and length of stay imputed by MICE No interaction for:

- RSV and *S. pneumoniae*
- influenza and *S. pneumoniae*

Strong interaction for influenza and RSV

- 4x lower discharge rate vs single pos
- only 5 double pos cases

Limitations

Selection bias

- convenience sampling difficult to compare study sites, representativeness
- requested sampling: URT swabs, bloods likely resulting in a sample biased towards sicker children

Residual confounding

 study parameters are causally interlinked, unable to adjust for many

Sample size

- wide confidence intervals for aetiological fraction estimates

Strengths

First European study, geographical representation

Year-round recruitment (capturing seasonality)

Representation of mildly symptomatic children in the control group

Detailed collection of symptom and management data

Biological samples collected

Gene expression samples collected from ARI children and controls (analysis pending)

Conclusions

- Detection of RSV, influenza virus, parainfluenza virus and hMPV on URT samples are strongly associated with ARI hospitalisation; other respiratory pathogens are either rare, or commonly found in well children

- 2/3 of children hospitalised for LRTI receive antibiotic treatment

- LOS is not associated with detected pathogen, but children receiving antibiotics have longer hospital stays than those not receiving antibiotics

Acknowledgements

We would like to thank all parents and participants for their contribution and support of the study. PED-MERMAIDS ARI study group: Fondazione Penta Onlus (study sponsor) - Carlo Giaquinto, Daniel Gomez Pena, Markela Koniordou Saint George's Hospital London – Michael Sharland, Julia A. Bielicki, Malte Kohns Vasconcelos, Jessica Jarvis, Elena Stefanova, Kamila Kalka, Claire Womack, Elia Vitale, Samsul Islam Alder Hey Children's Hospital Liverpool – Andrew Riordan, Liz Lee, Rachel Greenwood-Bibby Hospital Universitario 12 de Octubre Madrid – Pablo Rojo, Cristina Epalza, Manuel Gijon, Carmen Trovano, Fátima Machín and MaLuz Romero Hospital Clínico Universitario de Santiago – Federico Martinón-Torres, Carmen Rodríguez-Tenreiro Sánchez, Irene Rivero-Calle, Antonio Justicia-Grande, Lorenzo Redondo-Collazo, Miriam Cebey-López, Marta Lendoiro Fuentes, Beatriz Morillo P. and A. Kyriakou Children's Hospital – Maria Tsolia, Aggeliki Syggelou, Maria-Helen Papatesta Hippokration Hospital of Thessaloniki – Emmanuel Roilides, Elias Iosifidis, Savvas Papachristou, Katerina Vikelouda, Athina Giampani, Ioanna Stamouli Bambino Gesù Children's Hospital – Marta Ciofi Degli Atti, Carmen D'Amore, Maia De Luca, Livia Gargiullo, Susanna Livadiotti, Anna Chiara Vittucci University Medical Center Freiburg - Markus Hufnagel, Mirjam Freudenhammer, Bianca Rippberger, Anita Imm Clinic of Children's Diseases, Institute of Clinical Medicine, Vilnius University, Lithuania – Vytautas Usonis, Sigita Burokiene, Inga Ivaskeviciene, Bozena Paskevic University Hospital of Padua – Daniele Donà, Chiara Minotti, Liviana Da Dalt, Federica Savio University Hospital Lewisham – Maggie Nyirenda Nyang'wa, Sophie Keers, Samia Pilgrim, Emma Gardiner CHU Saint-Pierre Brussels – Tessa Goetghebuer, Alejandra Saravia Vidaurre Universitätsklinikum Tübingen – Hanna Renk, Anna-Lena Gemmel, Steffen Wiechers University Hospital of Patras – Despoina Gkentzi, Gabriel Dimitriou, Eleni Papachatzi, Kalliopi Konstantinopoulou, Sophia Leventeli Hospital Universitario La Paz Madrid – Cristina Calvo, Maria de Ceano-Vivas, Talía Sainz, Vega Mauleón Agia Sophia Children's Hospital of Athens – Vana Spoulou, Joanna Papadatou, Irene Tzovara

Thank you very much for your attention